Calculator Inactive.
\( \displaystyle 3 \left( x - \frac{5}{6} \right)^2 - \frac{1}{12} \)
\( \displaystyle -2x^2 + 12x - 10 \)
\( \displaystyle y = 6\left(x + \frac{3}{2} \right) ^2 - \frac{25}{2} \)
Vertex: (-1, 6); Axis of symmetry: \(x = -1;\) y-intercept: \( \displaystyle \left(0, \frac{17}{3}\right);\) x-intercepts:\( \displaystyle \left(-1 \pm 3\sqrt{2}, 0 \right); \) Reflection of the y-intercept over the axis of symmetry: \( \displaystyle \left( -2, \frac{17}{3} \right) \). For the graph, use your calculator to check.
Vertex: (3, -14); Axis of symmetry: \(x = 3;\) y-intercept: \( \displaystyle (0, 4)\) x-intercepts:\( \displaystyle \left(3 \pm \sqrt{7}, 0 \right); \) Reflection of the y-intercept over the axis of symmetry: \( \displaystyle \left( 6, 4 \right) \). For the graph, use your calculator to check.
\( \displaystyle k = \frac{1 \pm \sqrt{109}}{6} \)
\( \displaystyle y = -\frac{1}{6}x^2 + \frac{1}{6}x + 2 \)
\( \displaystyle y = x^2 - 14x + 45 \)
\( \displaystyle y = -\frac{1}{3}x^2 + \frac{8}{3}x - \frac{10}{3}\)
\( \displaystyle x = \left\{1 \pm i\sqrt{3} \right\} \)
\( \displaystyle $4840 \)
\( \displaystyle x = \left\{0, 18\right\} \)
\( \displaystyle x^2 - 8x + 25 \) or any scalar multiple thereof.
\( \displaystyle x = \frac{4}{9} \)
Calculator Active
\( \displaystyle y = -2x^2 + 6x - 4 \)
\( \displaystyle y = p^2 \left( x - \frac{3}{p^2} \right)^2 + \frac{p^3 - 9}{p^2} \)
\( \displaystyle v_0 = 20; h_0 = 37.5 \)