# Honors Algebra 2: Extra Practice Solving Rational Equations

• Class: Honors Algebra 2
• Author: Peter Atlas
• Algebra and Trigonometry: Structure and Method, Brown

Calculator Inactive

Solve

1. $$\displaystyle \frac{ 2x + 12} { x^2 - 10x + 16} = \frac{ 3} { x - 8} + \frac{ 4} { x - 2}$$
2. Solution

10

3. $$\displaystyle \frac{ 8} { m^2 - 6m} - \frac{ 3} { m - 6} = \frac{ 2} { m}$$
4. Solution

4

5. $$\displaystyle \frac{ 3} { x^2 - 4} + \frac{ 5} { x - 2} = \frac{ 7} { x + 2}$$
6. Solution

$$\displaystyle \frac{27}{2}$$

7. $$\displaystyle \frac{ 8} { y^2 - 7y + 12} = \frac{ 5} { y - 3} + \frac{ 2} { y - 4}$$
8. Solution

$$\displaystyle \frac{34}{7}$$

9. $$\displaystyle \frac{ 2} { b^2 - 5b - 14} = \frac{ 3} { b - 7} - \frac{ 4} { b + 2}$$
10. Solution

32

11. $$\displaystyle \frac{ 4} { a + 3} + \frac{ 2} { 3 - a} = \frac{ 4} { a^2 - 9}$$
12. Solution

11

13. $$\displaystyle \frac{ 4} { p^2 - 8p + 12} = \frac{ p} { p - 2} + \frac{ 1} { p - 6}$$
14. Solution

-1

15. $$\displaystyle \frac{ a + 8} { 16} = \frac{ -2} { a - 10}$$
16. Solution

{8, -6}

17. $$\displaystyle \frac{ x^2 + 7x} { x - 2} = 4 + \frac{ 36} { 2x - 4}$$
18. Solution

-5

19. $$\displaystyle \frac{ y} { y - 2} - 1 = \frac{ 4} { y + 3}$$
20. Solution

7