# Honors Algebra 2: Extra Practice Dividing Polynomials

• Class: Honors Algebra 2
• Author: Peter Atlas
• Algebra and Trigonometry: Structure and Method, Brown

Calculator Active.

Divide. Simplify if possible. Include domain restrictions where necessary.

1. $$\displaystyle \frac{a^{13}}{a^{10}}$$
2. Solution

$$a^{3}, a \ne 0$$

3. $$\displaystyle \frac{15x^{3}} {5x}$$
4. Solution

$$3x^{2}, x \ne 0$$

5. $$\displaystyle \frac{35a^{2}} {7a^{2}}$$
6. Solution

$$5a^{2}, a \ne 0$$

7. $$\displaystyle \frac{6a^{3} - 4a^{2} + 8a} {2a}$$
8. Solution

$$3a^{2} - 2a + 4, a \ne 0$$

9. $$\displaystyle \frac{10n^{3} - 15n^{2} - 35n} {5n}$$
10. Solution

$$2n^{2} - 3n - 7, n \ne 0$$

11. $$\displaystyle \frac{6a^{5} - 8a^{4} - 2a^{3} + 10a^{2} - 4a} {2a}$$
12. Solution

$$3a^{4} - 4a^{3} - a^{2} + 5a - 2, a \ne 0$$

13. $$\displaystyle \frac{x^{5a} - x^{3a} + x^{a}}{ x^{a}}$$
14. Solution

$$x^{4n} - x^{2n} + 1, x \ne 0$$

15. $$\displaystyle \frac{x^{2} - 14x + 45} {x - 5}$$
16. Solution

$$x - 9, x \ne 5$$

17. $$\displaystyle \frac{20k^{2} + 27k - 14} {5k - 2}$$
18. Solution

$$4k + 7, k \ne \displaystyle \frac{2}{5}$$