Honors Algebra 2: Extra Practice on Rational Functions -- Asymptotes and Holes in the Graph



Calculator Inactive

For each of the following, identify all vertical asymptotes (if any), horizontal asymptotes (if any), and the coordinates of holes in the graph (if any).

  1. \( \displaystyle f(x) = \frac{1}{x-2} \)
    Solution

    V.A.: \(x = 2\); H.A.: \(y = 0\); Holes: none

  2. \( \displaystyle f(x) = \frac{3}{2x+1} \)
    Solution

    V.A.: \( \displaystyle x = - \frac{1}{2}\); H.A.: \( \displaystyle y = 0\); Holes: none

  3. \( \displaystyle f(x) = \frac{x+3}{x^2 + 4x + 3} \)
    Solution

    V.A.: \( \displaystyle x = - 1\); H.A.: \( \displaystyle y = 0\); Holes: \( \displaystyle \left(-3,-\frac{1}{2} \right)\)

  4. \( \displaystyle f(x) = \frac{x^3 - 4x}{x^2 - 4} \)
    Solution

    V.A.: none; H.A.: none; Holes: \( (2, 2)\) and \( (-2, -2)\)

  5. \( \displaystyle f(x) = \frac{3x^2 - 8x - 3}{x^2 - x - 6} \)
    Solution

    V.A.: \( \displaystyle x = - 2\); H.A.: \( \displaystyle y = 3\); Holes: \( \displaystyle \left(3,2 \right)\)

  6. \( \displaystyle f(x) = \frac{5x^2 + 5ax - bx - ab}{x^2-a^2} \)
    Solution

    V.A.: \( \displaystyle x = a\); H.A.: \( \displaystyle y = 5\); Holes: \( \displaystyle \left(-a,\frac{5a+b}{2a} \right)\)

  7. \( \displaystyle f(x) = \frac{4x-16}{x^3 + 6x^2 - 16x - 96} \)
    Solution

    V.A.: \( \displaystyle x = -6\) and \( x = -4 \); H.A.: \( \displaystyle y = 0\); Holes: \( \displaystyle \left(4,\frac{1}{20} \right)\)