Draw the graph of \( f(x) =
\begin{cases}
1, & \text{if } x < 0 \\
0, & \text{if } x = 0 \\
-1, & \text{if }x > 0
\end{cases}
\)
Solution
Given \( h(x) =
\begin{cases}
x + 2, & \text{if } x \le 4 \\
6, & \text{if }x > 5
\end{cases}
\)
Draw the graph
Solution
Find \(h(0)\)
Solution
2
Find \(h(4)\)
Solution
6
Find \(h(4.5)\)
Solution
Does Not Exist
Find \(h(10)\)
Solution
6
Given \( f(x) =
\begin{cases}
3x + 5, & \text{if } \displaystyle x < \frac{1}{2} \\
2x + 1, & \text{if } \displaystyle x > \frac{1}{2}
\end{cases}\)
Find \( f(3)\)
Solution
7
Find \( \displaystyle f \left( \frac{1}{2} \right) \)
Solution
Does Not Exist
Find \( \displaystyle f \left( \frac{1}{3} \right) \)
Solution
6
Find \( \displaystyle f \left( \frac{5}{2} \right) \)
Solution
6
Given \( g(x) = [x] \) (that is, the greatest integer function)
Find \(g(3.2)\)
Solution
3
Find \(g(1.8)\)
Solution
1
Find \(g(-2.4)\)
Solution
-3
Find \(g(-6.9)\)
Solution
-7
Given \( h(x) = 3[x + 2] - 1 \) (where \([x]\) is the greatest integer function)
Find \(h(1.8)\)
Solution
8
Find \(h(3.1)\)
Solution
14
Find \(h(-0.4)\)
Solution
2
Find \(h(-3.1)\)
Solution
-7
Calculators cost $17.95 each if 1 - 10 are purchased, $15.95 each if 11 - 200 are purchased, and $14.50 each if more than 200 are purchased.
Write a piecewise function \(C\) for the cost of \(x\) calculators.
Solution
\( C(x) =
\begin{cases}
17.95x, & \text{if } x \in \mathbb{Z}; 0 < x \le 10 \\
15.95x, & \text{if } x \in \mathbb{Z}; 10 < x \le 200 \\
14.50x, & \text{if } x \in \mathbb{Z}; x > 200
\end{cases}
\)
Find \(C(17)\)
Solution
$271.15
Find \(C(345)\)
Solution
$5,002.50
A gift shop sells pewter mugs for $35. They are currently running an engraving promotion. The first six letters are engraved free. Each additional letter costs 20 cents.
Write a piecewise model that gives the price of the mug with \(x\) engraved letters